Get Permission Banu, Dhakshnamoorthy, and Sakthivel: Anatomy of gantzer muscle revisited: A descriptive study in south Indian cadavers


Introduction

Accessory muscles refer to anatomical variations that involve additional muscles encountered alongside the normal set of muscles. Gantzer muscle (GM) is the accessory muscle associated with the flexor pollicis longus, named after Karl Friedrich Gantzer in 1813, although Albinus initially described it in the 18th century.1 The origin of GM may vary, arising from the medial epicondyle of the humerus, the coronoid process of the ulna, or the deep surface of the flexor digitorum superficialis (FDS).2 Despite variations in its origin, GM consistently inserts at the ulnar portion of the flexor pollicis longus (FPL). The morphology of the GM exhibited a slender, strap-like configuration characterized by a fusiform shape and could present as voluminous or occasionally triangular.3 Innervated by the anterior interosseous nerve (AIN), which has a posterior relationship with the muscle, and occasionally, GM receives innervation from the median nerve (MN).

Anterior interosseous nerve syndrome is a compression neuropathy that impacts the AIN, causing motor weakness in the long tendons responsible for movement in the index finger and thumb. Among the various factors contributing to this syndrome, one frequently underestimated cause is the existence of an accessory head of the flexor pollicis longus muscle. Compression at this nerve-muscle junction can lead to neuropathy, resulting in the Kiloh-Nevin syndrome.1, 2 Thus, GM could be one of the causes of compressive neuropathy and should be considered in the management of compartment syndrome. This study aims to revisit the anatomy of GM and provide a detailed analysis of the morphology, dimensions, and innervation of the GM, in cadavers of South Indian origin, specifically from Tamil Nadu and Puducherry region.

Materials and Methods

This descriptive observational study utilized 60 upper limbs from 30 cadavers (Male – 28; Female - 2). Cadavers with reasonable preservation of limb structure that were available during the study period from June 2018 to June 2023 were included. The cadavers with faulty dissection of limbs or any history of surgery in the forearm were excluded. These cadavers were donated to the Department of Anatomy through the Body Donation Program and were approved for Medical Education and Research.

The dissection of the front of the forearm was done following Cunningham’s dissection manual.4 After reflecting the skin, the superficial muscles of the forearm were carefully dissected, and the presence of GM was identified. The shape, origin, and insertion of the GM were recorded. The length of the muscle and the tendon was measured with a digital vernier caliper. The innervation of the GM and its relation to AIN was observed. Descriptive statistics and comparisons between sides were analyzed using SPSS version 19.

Results

GM was observed in 38 (63.33%) of the limbs (Figure 1). The bilateral presentation of GM was observed in 11 cadavers (40.74%) and unilateral in 16 cadavers (59.26%) (Right-10; left-6). The shape of the GM was papillary, flat, or slender. The origin of the GM muscle was found to vary across specimens, with 25 originating from the undersurface of the FDS, five from the coronoid process, two from the radial tuberosity, and eight from the medial epicondyle. Additionally, one specimen showed the GM originating from the coronoid process and FDS (Figure 1).

Figure 1

Attachments of Gantzer muscle (GM). a): Origin from the medial epicondyle along with other superficial muscles. b): From the coronoid process of the ulna. c): FDS and PT are reflected laterally to show the origin from the coronoid process and a few fibers attached to FDS. GM is inserted into FDP.

FDS: Flexor digitorum superficialis; FDP: Flexor digitorum profundus

https://s3-us-west-2.amazonaws.com/typeset-prod-media-server/f39fb633-a47b-4e13-83aa-ea4845463752image1.jpeg

Two separate GM muscles, inserted individually into the FPL and flexor digitorum profundus (FDP), were observed bilaterally in one cadaver and unilaterally on the right side in another (Figure 2). GM was inserted unilaterally into FDP in three specimens (Right- 2; Left- 1). In the rest of the specimen, GM was inserted into the tendon of FPL. Thus, a total of 41 GM was observed in the 60 limbs.

Figure 2

Dissection of double Gantzer Muscle on the right side in two cadavers. a and b): Shows the insertion into flexor pollicis longus (FPL) and flexor digitorum longus (FDL).

AIN: Anterior interosseous nerve; MN: Median nerve; PT: Pronator teres; M: Medial; L: Lateral

https://s3-us-west-2.amazonaws.com/typeset-prod-media-server/f39fb633-a47b-4e13-83aa-ea4845463752image2.jpeg

The AIN was posterior to GM in 36 specimens and lateral in five specimens. Notably, in 90.9% of cases, the anterior interosseous nerve supplied the GM, with the remaining 9.1% receiving direct innervation from the MN, whereas one specimen received innervation from AIN and MN (Figure 3). The mean length of the muscle belly was 9±2.63 cm (R- 8±2.06; L-9.5±3.38), and the tendon was 2.81±2.5 cm (R- 2.68±2.52; L-3.02±2.58). There were no statistically significant differences in the length of the muscle belly (p-value 0.192) or the tendon (p-value 0.367) between the right and left sides.

Figure 3

Innervation of Gantzer muscle (GM) in the forearm. a): Right forearm shows innervation from AIN and MN. b): Left forearm shows innervation from AIN. FPL: Flexor pollicis longus; PT: Pronator teres; AIN: Anterior interosseous nerve; MN: Median nerve; M: medial; L: Lateral

https://s3-us-west-2.amazonaws.com/typeset-prod-media-server/f39fb633-a47b-4e13-83aa-ea4845463752image3.jpeg

Discussion

Disruption in the preliminary cleavage process during the development of muscles may result in variations in muscle formation.5 In the seventh week of embryonic development, myogenic precursor cells originating from the somites of the paraxial mesoderm migrate into the limb buds, where they begin to organize and form the flexor-extensor muscle groups. As development progresses, connective tissue laminae emerge, partitioning these muscle groups into individual muscles. In the forearm, the flexor muscles originate from flexor mass, which undergoes subsequent division into two distinct layers: superficial and deep. It is within the deep layer that muscles such as the FDS, FDP, and FPL arise. The presence of accessory muscles that establish connections between the flexor muscles can be attributed to the incomplete separation of the flexor mass during this developmental phase. Therefore, improper separation of the superficial and deep layers of the forearm muscle mass during embryonic development offers a possible explanation for the origin of accessory muscles like the GM.6

GM is described as originating from the FDS and inserted into the ulnar aspect of the FPL. The muscle follows a downward and oblique course toward the ulnar aspect of the FPL and its tendon.7 At its proximal attachment, the fibers of the GM could merge with the common flexor origin of other forearm muscles. However, GM was found to originate from the FDS and was inserted into the FPL. Additionally, it has been noted to arise from the coronoid process. Sometimes it is inserted into the deep surface of the FDP.8

In the present study, the predominant origin of the GM was from the FDS, with a few cases originating from the coronoid process, radial tuberosity, or medial epicondyle. Similarly, a study from Brazil involving 84 limbs reported the GM to originate from the FDS in 42 cases, from the coronoid process of the ulna in eight cases, and the medial condyle in seven cases.1 Kara et al. examined the forearms of 45 fetuses and 24 cadavers and reported the incidence of GM as 32% in fetal specimens and 39% in adult specimens. They found that the proximal attachment of the GM was predominantly from the undersurface of the FDS in 82.7% of fetuses and 45% of adult cadavers.9 Dual origins from the medial epicondyle and the coronoid process have also been reported.10 In a study from Saudi Arabia, GM was present in 66.66% of specimens, with 55.55% arising from the medial epicondyle and 16.66% from the coronoid process of the ulna, whereas a study from South India found them to be 10.38% and 18.9% respectively.7, 11

Gunnal et al. observed the bilateral presence of GM in 72% and unilateral in 60%, which was mostly on the right side.12 Caetano et al. reported two-headed GM, whereas in the present study, two separate muscles were inserted individually into FPL and FDP.1 In a study on the South Indian population, 46.03% of specimens exhibited an accessory head of the FPL, while 14.28% inserted into the FDP, and similarly in the present study, six GMs were observed to insert into FDP (14.63%).3

The prevalence of GM ranged from 20% to 68%, with a bilateral or unilateral presentation with regional variations, as shown in Table 1. Ballesteros et al. reported that the South American population had a lower prevalence when compared to North American and Asian populations.5 Several studies conducted across different regions of India have reported varying prevalence of GM, as shown in Table 2. The highest prevalence of 76% was observed in Maharashtra, and the lowest prevalence of 25% and 18% in Gangtok and Karnataka, respectively.13, 14, 15 Findings in the present study suggest a widespread variation in the prevalence of GM across various regions, with a higher prevalence noted in South India. However, it is important to note that there are variations in population sizes across different studies. This suggests that there may be a potential correlation with these varying population numbers, which underscores the need for further investigation.

Table 1

Prevalence of the Gantzer muscle in various populations

Study

Population

Sample size

Prevalence

Bilateral presentation

Unilateral presentation

Right

Left

Al Qattan7 1996

Saudi Arabia

25 limbs (cadavers)

52%

-

-

-

Jones et al.16 1997

Europe - Spain

40 cadavers

60%

16.7%

50%

12.6%

Oh et al.17 2000

Korea

72 cadavers

66.7

50%

33%

Uyaroglu et al.18 2006

Turkey

52 cadavers

51.9%

74%

26%

Caetano et al.1 2015

Brazil

40 cadavers

68%

-

-

-

Kara et al.9 2017

Turkey

45 fetuses

24 cadavers

32%

39%

10 fetuses

8 cadavers

-

-

Ballesteros et al.5 2018

Colombia

106 limbs

32.1%

47.8%

52.2%

Oleiveira et al.19 2022

Brazil

34 limbs

50%

88.23%

-

Munguti et al.20 2022

Kenya

43 limbs

45%

11%

44%

46%

Torun et al.21 2022

Turkey

473 extremities

MRI study

20.3%

22.9%

40%

37.1%

Present study 2024

India

60 limbs

63.33%

40.74%

42.11%

15.8%

Table 2

Prevalence of the Gantzer muscle in different regions of India

Study

Indian Population

Sample size

Prevalence

Bilateral presentation

Unilateral presentation

Right

Left

Pai et al.3 2008

South India

58/126

46.16%

58

Gunnal et al.12 2013

India (Maharashtra)

180 specimens

51.1%

71.73% (33 cadavers)

16 specimens

10 specimens

Tamang et al.13 (2013)

Gangtok, India

15/60

25%

10%

46.6%

26.66%

Jadhav & Zmbare14 2015

Maharashtra, India

87/114

76.31%

71.73%

28.26%

Bajpe et al.15 2015

Karnataka, India

9/50

18%

-

66.67%

11.11%

Bagoji et al.11 2017

South India

58 limbs

29.3%

12.06%

5.17%

Jayan et al.22 2021

India (Kerala)

60 limbs

46.7%

0

60.7%

39.2%

Vedapriya et al.23 2022

India, Telangana

50 limbs

58%

40%

10%

8%

Present study 2024

India (Tamil Nadu & Puducherry)

60 Limbs

63.33%

40.74%

42.11%

15.8%

The morphology of the GM has been described as strap-like, fusiform, slender, voluminous, papillary, spindle, band-like, and triangular.3, 16, 17 Bagoji et al. identified that the muscle predominantly exhibited a spindle-shaped (20.68%) or papillary (8.62%) appearance.11 Gunnal et al. described the shape as fusiform in 83.69% of cases, while in 16.31%, it exhibited a broad and thick appearance.12 The present study identified three shapes: papillary, flat, and slender.

Several studies have reported the total length of the GM to be around 10 cm, as shown in Table 3. Gunnal et al. observed the average length of the GM to be 80.47 ± 1.01 mm, with the tendon measuring an average length of 1.09 ± 0.09 mm.12 In the present study, the mean length of the muscle belly was 9 ± 2.63 cm, which is consistent with previous studies in the literature. However, the tendon was 2.81 ± 2.5 cm, which is comparatively higher than previous studies.

Table 3

Comparison of dimensions of the Gantzer muscle

Author

Length of the muscle

Width of the muscle

Length of the tendon

Hemmandy et al.8 1993

5 to 8 cm

1 to 2.5 cm

-

Jones et al.16 1997

68 ± 17 mm

-

11.7±13 mm

Pai et al.3 2008

Total length - 8 ± 1.5 cm (Muscle belly -three-fourths)

-

One-fourth of the total length

Kara et al.9 2012

7.4 ± 1.2 cm (total length including tendon 8.2±1.26 cm)

0.7 ± 0.2 cm

-

Gunnal et al.12 2013

80.47 ± 10.1 mm

6 mm

19.04 mm

Bellasteros et al.5 2018

84.42 ± 9.27 mm

7.62 ± 1.11 mm

9.68 ± 1.86 mm

Jayan et al.22 2021

10.3±1.7 cm

R -0.63±0.4 cm

L – 0.57±0.3 cm

-

Oleiveira et al.19 2022

10.5 cm

0.3 cm

-

Present study 2024

9±2.63 cm

-

2.81±2.5 cm.

Variations in the innervation and positions of the median nerve and anterior interosseous nerve in relation to GM have been observed in many studies. In the study by Bagoji et al., all the muscles were innervated by the AIN and exhibited various relationships with GM. It was anteriorly related in 1.72%, posteriorly in 9%, laterally in 5.17%, and posterolaterally in 6.89% of the specimens.11 Al-Qattan et al. reported that both nerves were anterior to the GM.7 In the present study revealed that in 91.67%, the AIN was posterior to the GM and in 8.3% anterior to it. Gunnal et al. observed that the innervation of GM was predominantly from AIN, at 80.43%, and by the median nerve at 19.56%.12 Similarly, in the present study, in 90.9% of cases, GM was innervated by AIN and 9.1% by the median nerve.

The GM helps in muscle transfer to restore function in multiple nerve palsies in crush injuries, Hansen’s disease, and compartment syndrome.24 Abnormal tendinous attachment into the FDP slip at the index finger can cause difficulty in the distal forearm movements and inability to flex the distal interphalangeal joint of the thumb without flexing the distal phalanx of the index finger.2 The above condition should be clearly excluded from the condition called trigger finger.25 The GM could cause AIN compression syndrome or Kiloh-Nevin syndrome leading to neuropathy.11, 26

Conclusion

The present study describes the anatomy of GM in South Indian cadavers. Studies investigating GM have revealed significant disparities in findings, both among different global population groups and even within the same populations, making it challenging to generalize anatomical features related to GM. Consequently, orthopedic and hand surgeons must exercise caution when considering GM involvement in cases of isolated AIN palsy, especially when no other obvious cause is evident in the patient's clinical history. Recognizing the possibility of GM involvement is crucial as it could greatly impact the clinical presentation and subsequent management decisions.

Source of Funding

None.

Conflict of Interest

None.

References

1 

EB Caetano JJ Sabongi LÂ Vieira MF Caetano DV Moraes Gantzer muscle: an anatomical studyActa Ortop Bras2015232725

2 

N Andring SA Kennedy NP Iannuzzi Anomalous Forearm Muscles and Their Clinical RelevanceJ Hand Surg Am201843545563

3 

MM Pai SR Nayak A Krishnamurthy R Vadgaonkar LV Prabhu AV Ranade The accessory heads of flexor pollicis longus and flexor digitorum profundus: Incidence and morphologyClin Anat20082132528

4 

GJ Romanes Head and Neck and BrainCunningham’s Manual of Practical AnatomyVol 315th edOxford University PressNew York2011225

5 

DR Ballesteros PL Forero LE Ballesteros Accessory head of the flexor pollicis longus muscle: anatomical study and clinical significanceFolia Morphol (Warsz)2019782394400

6 

BM Carlson Human embryology & developmental biology5th edElsevier Health SciencesPhiladelphia20142068

7 

MM Al-Qattan Gantzer’s muscle. An anatomical study of the accessory head of the flexor pollicis longus muscleJ Hand Surg Br1996275226970

8 

MV Hemmady AV Subramanya IM Mehta Occasional head of flexor pollicis longus muscle: a study of its morphology and clinical significanceJ Postgrad Med1993391146

9 

A Kara O Elvan S Yildiz H Ozturk Accessory head of flexor pollicis longus muscle in fetuses and adult cadavers and its relation to anterior interosseous nerveClin Anat20122556018

10 

EB Kaplan DC Riordan M Spinner The ThumbKaplan's functional and surgical anatomy of the handLippincott Williams & WilkinsPhiladelphia198411351

11 

IB Bagoji MA Doshi GA Hadimani BM Bannur BG Patil BS Patil Incidence and morphology of the accessory head of the flexor pollicis longus muscle (Gantzer’s muscle) in South Indian populationJ Anat Soc India201766S50

12 

SA Gunnal AU Siddiqui SR Daimi MS Farooqui RN Wabale A study on the accessory head of the flexor pollicis longus muscle (Gantzer’s muscle)J Clin Diagn Res20137341821

13 

B Tamang P Sinha R Sarda P Shilal BV Murlimanju Incidence and morphology of accessory head of flexor pollicis longus muscle- An anatomical studyJ Evol Med Dent Sci201323668006

14 

SD Jadhav BR Zambare Accessory head of flexor pollicis longus muscle and its clinical significanceInt J Curr Resh201575165403

15 

R Bajpe R Tarakeshwari R Shubha Gantzer muscles; a study on 50 cadaveric upper limbsNatl J Clin Anat20154417985

16 

Bİ Torun M Balaban Prevalence and clinical implications of the Gantzer’s muscle.Surg Radiol Anat202244912971303

17 

J Munguti F Nyaanga B Neema D Omondi V Kipkorir S Darbar The incidence and morphology of the Gantzer’s muscle in a Kenyan populationAnat J Afr202211121028

18 

FG Uyaroglu G Kayalioglu M Erturk Incidence and morphology of the accessory head of the flexor pollicis longus muscle (Gantzer`s muscle) in a Turkish populationNeurosciences (Riyadh)20061131714

19 

KM Oliveira CB Breder EF Ponte AF Cordeiro MF Oliveira WA Gomes The accessory heads of the muscles flexor pollicis longus and flexor digitorum profundus (Gantzer muscle)-An anatomical study in Brazilian cadaversMorphologie20221063523742

20 

M Jones PH Abrahams JR Sanudo M Campillo Incidence and morphology of accessory heads of flexor pollicis longus and flexor digitorum profundus (Gantzer’s muscles)J Anatomy1997191Pt 34515

21 

CS Oh IH Chung KS Koh Anatomical study of the accessory head of the flexor pollicis longus and the anterior interosseous nerve in AsiansClin Anat20001364348

22 

KA Vedapriya N Samala Incidence and Morphology of Accessory Head of Flexor Pollicis Longus in Telangana, IndiaInt J Anat Radiol Surg2021103113

23 

A Jayan J Krishnaraj J Gopi Accessory Head of the Flexor Pollicis Longus: A Cadaveric Study on the Gantzer's MuscleJ Clin Diagn Res202115115

24 

J Hua VP Kumar BP Pereira AY Lim RW Pho J Liu Split flexor carpi radialis musclePlast Reconstr Surg199910339304

25 

I Degreef L D Smet Anterior interosseous nerve paralysis due to Gantzer’s muscleActa Orthop Belg2004704824

26 

W Tabib F Aboufarah A Asselineau Compression of the anterior interosseous nerve by Gantzer’s muscleChir Main2001202416



jats-html.xsl


This is an Open Access (OA) journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

  • Article highlights
  • Article tables
  • Article images

Article History

Received : 11-03-2024

Accepted : 19-03-2024


View Article

PDF File   Full Text Article


Copyright permission

Get article permission for commercial use

Downlaod

PDF File   XML File   ePub File






Article Access statistics

Viewed: 670

PDF Downloaded: 392