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Abstract 

Mechanistic inference and data-driven discovery are complementary strengths that come with converging forces of artificial intelligence and computational 

physiology in the quantitative study of human systems. Predictive modeling and simulation, through a combination of principled, biophysically informed 

models with machine-learning pipelines, allows high-fidelity reconstruction of physiological dynamics at molecular, cellular, organ and systemic scales; this 

convergence enables mechanistic hypothesis testing, virtual cohort experiments and accelerated parameter estimation challenging to each individually. Used 

in modern health care systems, such hybrid systems improve diagnostic sensitivity based on learned biomarkers, make it possible to plan therapy individually 

based on patient-specific virtual physiological models, and form the basis of large-scale monitoring and early warning by combining continuous sensor streams 

with electronic health records. The opportunities are high: better precision medicine, accelerated translational research by in-silico trials, more efficient 

allocation of resources, and more economical care delivery. However, significant issues remain, including data reliability (heterogeneity, missingness, and 

bias), important ethical issues (privacy, informed consent, fairness, and accountability) and low interpretability and provenance of AI-based predictions that 

impede clinical trust and regulatory acceptance. To achieve the full potential of this interdisciplinary paradigm, a tight standard of validation, clear reporting, 

data infrastructures that are interoperable and governance structures that reflect, closely align technological innovation with clinical, legal, and societal 

anticipations will be required. 
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1.  Introduction 

The last 20 years have seen a frenzy of biomedical research 

propelled by the application of enhanced computational 

methods. Among them, artificial intelligence (AI) and 

computational physiology have become complementary 

frameworks to understand the structure, functional and 

dynamics of human biological systems. In its broad use, AI 

can be defined as computation techniques that can replicate 

the tasks traditionally done by human intelligence, i.e. pattern 

recognition, prediction, and decision-making. In biomedical 

science, AI includes the following separate yet 

interconnected paradigms machine learning (ML), which 

learns patterns and statistical correlations using complex 

data; deep learning (DL), which learns hierarchical feature 

extraction using multi-layered neural networks; and symbolic 

AI, which learns explicit rules of logic to be interpretable and 

reasoning-capable. Computational physiology by contrast 

deals with mechanistic, biophysically plausible models that 

model physiological processes at scales ranging down to ion 

channel kinetics and cellular signaling, and up to tissue level 

hemodynamics and the whole-organ behavior. A 

combination of these strategies forms the new paradigm of 

predictive modeling, which is herein described as a mix of 

empirical data and mechanistic theory that can be used to 

predict physiological states, disease progression, and 

therapeutic outcome.1,2 

Computational and predictive models are important 

because they have the ability to solve the complexity of 

human physiology. Biological mechanisms are non-linear, 

adaptive and hierarchical and cannot be reduced merely 
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through reductionist analysis. Models based solely on data, 

though able to provide high-dimensional predictive power, 

typically cannot be interpreted and do not generalize on other 

tasks or settings, outside the training environment. On the 

other hand, mechanistic models based on biophysical laws 

can be explanatory but they are constrained by the uncertainty 

of their parameters, the high costs of such computations, and 

biological pathway incompleteness. A balanced solution to 

this problem can be achieved with an integrated method, 

which integrates AI-based inference with computational 

physiology: the predictive power of the data-driven models 

can be used, and the explanatory validity of mechanistic 

models can be preserved. This hybrid paradigm offers a route 

to the understanding emergent behaviors in complicated 

human systems, not only to the generation of hypotheses but 

also clinical translation. 

There are a number of clinical domains that demonstrate 

the transformational possibility of this integration.3  Patient-

guided cardiac models based on ML algorithms have been 

applied in cardiovascular medicine to forecast the risk of 

arrhythmia, optimize ablation therapy, or better management 

of heart failure. AI-improved network models are used in 

neuroscience to gain new understanding about the spreading 

of epileptic seizures and refine surgical plans. In metabolic 

diseases, hybrid modeling systems enable early warning of a 

dysregulated glucose dynamics, personalized insulin dosing, 

and the discovery of new treatment targets. In addition to 

these applications, integrative modeling is core to the creation 

of digital twins- virtual models of single patients, which 

continuously update themselves with live clinical data to 

model disease pathways and determine the best methods of 

treatment. Such developments can be seen to focus on both 

the scientific and translational usefulness of integrating AI 

with computational physiology, especially in precision 

medicine.4 

This review is aimed at critically reviewing the 

intersection of AI and computational physiology to improve 

biomedical science. In particular, the review has four 

objectives. First, it provides a survey of conceptual and 

methodological underpinnings, providing the reader with a 

systematic overview of the way machine learning, deep 

learning, symbolic AI and mechanistic modeling are used in 

human physiology. Second, it summarizes representative 

case studies of cardiovascular, neurological, and metabolic to 

underscore the opportunities and the existing limitations. 

Third, it assesses the difficulty of the integration process such 

as data heterogeneity, model interpretability, population-

wide validation, and ethics. Lastly, it presents suggestions on 

the future directions of research which should include 

standardized frameworks, explainable models, and clinically 

tested applications that can be transformed into real-life 

practice.5 

These purposes are reflected in the organization of the 

article. Part I gives a conceptual summary of AI paradigms 

and mechanistic modeling methods in physiology. Section II 

reports about methodological mechanisms to combine data-

driven and biophysical frameworks, such as hybrid models, 

multimodal data assimilation. In Section III, we provide 

clinical case studies in each of the major organ systems, 

demonstrating translational use and clinical effect. Section IV 

assesses challenges, including computational scalability, 

regulatory frameworks and equity of access. The final part is 

a conclusion that summarizes findings and provides 

directions with regards to research focus in the upcoming 

period of the innovation. Operationally, core concepts of 

several models and techniques are provided in Table 1table 

1.6 

Table 1: Operational definitions of core concepts in the 

review3-7 

Term Definition Relevance to 

human-system 

modeling 

Artificial 

Intelligen

ce (AI) 

Broad field of computer 

science focused on 

replicating intelligent 

behavior in machines. 

Includes ML, DL, and 

symbolic reasoning 

approaches. 

Enables pattern 

recognition, 

predictive 

analytics, and 

decision 

support in 

biomedical 

systems. 

Machine 

Learning 

(ML) 

Data-driven algorithms 

that learn associations or 

predictive rules from 

large datasets. 

Supports 

classification, 

risk 

stratification, 

and outcome 

prediction in 

clinical 

physiology. 

Deep 

Learning 

(DL) 

Subset of ML using multi-

layered neural networks 

capable of capturing non-

linear and hierarchical 

features. 

Powers image 

analysis, signal 

interpretation, 

and multi-scale 

physiological 

modeling. 

Computa

tional 

Physiolo

gy 

Use of mechanistic, 

mathematical, and 

biophysical models to 

simulate human systems 

across scales (molecular 

to systemic). 

Provides 

interpretability 

and mechanistic 

understanding 

of biological 

processes. 

Predictiv

e 

Modelin

g 

Use of statistical, AI-

based, or mechanistic 

models to forecast disease 

progression or treatment 

outcomes. 

Forms the 

bridge between 

theoretical 

models and 

clinical 

decision-

making. 

 

The intersection of AI and computational physiology is 

a strategic junction to learn more about human systems, 

bridge the divide between basic science and clinical practice, 
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and shift in the direction of predictive, personalized, and 

preventative healthcare. This review aims to equip 

researchers, clinicians and biomedical engineers with the 

perspective needed to effectively and responsibly utilize 

these technologies by offering a systematic synthesis of 

methods, applications and challenges.7 

2. Foundations of Computational Physiology  

2.1. Historical background 

Computational physiology is a subfield of systems biology 

and mathematical physiology that began to develop as a 

natural development of attempts to formalize biological 

processes in quantitative frameworks in the late 20thcentury. 

This was first rigorously biophysically modeled by Hodgkin 

and Huxley (1952) studying the ionic basis of neuronal action 

potentials and by Noble (1960s) studying cardiac 

electrophysiology, which became a paradigm of mechanistic 

simulation. These models showed that biological complexity 

was decomposable into mathematical equations that are able 

to reproduce emergent physiological behavior. A later 

development in the 1990s with the emergence of systems 

biology broadened this view to include the networks of 

interacting pathways, facilitated by the increase in 

computational capability and by the high-throughput data. 

Gradually, computational physiology became a field between 

reductionist experimentation and integrative modeling, and 

the scope of its applications was broadened, to include, e.g. 

the kinetics of single-ion channel systems, or virtual human 

models.8 

2.2. Key models of physiological systems 

Simulation of human systems has focused on three key areas, 

cardiovascular, neurological and metabolic physiology. 

1. Models of cardiovascular: Multi-scale models of the 

heart, including the Luo-Rudy model and 

subsequently the Ten Tusscher-Panfilov model, have 

grown to become the standard models of 

cardiovascular simulation: action potentials, 

conduction, and arrhythmogenesis. Computational 

fluid dynamics (CFD) blood flow models, which are 

coupled with electromechanical simulations, can be 

used at the whole-organ level to reconstruct 

ventricular dynamics and hemodynamic responses.9 

2. Neurological models: The Hodgkin-Huxley 

framework motivated a series of models of single-

neuron excitability (FitzHugh-Nagumo, Morris-

Lecar) to whole-brain neural networks. The present-

day attempts include the Blue Brain Project, which 

uses the comprehensive biophysical modeling of 

cortical loops to recreate cognitive and pathological 

conditions. Network-level models further enable 

investigation of epilepsy, Parkinson's disease, and 

functional connectivity in resting-state brain 

networks.10  

3. Metabolic models: Simulation of whole-body 

metabolism was induced by classical compartmental 

models (e.g. the minimal model of glucose-insulin 

dynamics by Bergman). Higher complexity systems 

biology frameworks, such as constraint-based 

modeling of metabolic fluxes and genome-scale 

metabolic reconstructions, have now modeled 

dynamic control of energy balance, glycemic 

regulation and endocrine interactions. These models, 

molecular, cellular, tissue and organ, make up a toolkit 

to study physiological processes in health and 

disease.11 

2.3. Role of predictive modeling 

Predictive modeling is the cohesive concept in any 

computational physiology since it allows models to not only 

recreate observed phenomena, but also predict responses of a 

system to untested conditions. Predictive models of 

arrhythmia in cardiovascular systems predict the onset of 

arrhythmias, steer ablation therapy, and refine pacing 

therapy. In neuroscience, they model the spread of a seizure, 

predict the results of cortical stimulation and offer virtual 

testbeds to neuroprosthetics. Predictive frameworks are used 

in metabolic systems to predict glycemic excursions, to 

optimise insulin dosing schedules, and to investigate the 

disease progression of diabetes and obesity. Notably, 

predictive modeling is more efficient in hypothesis 

generation, and the researchers have an opportunity to test 

virtual experiments, which are impossible or unethical in 

practice. Combined with real-world data and AI-based 

inferences, such models form the basis of the creation of 

digital twins, individualized virtual copies of the patient that 

recalibrate to clinical data streams.12 Competencies in 

computational physiology started with decades of 

development of mechanistic models of many organ systems, 

and systems biology and high-performance computing 

enriched these models over time. The main contribution of 

predictive modeling is that it allows one to convert the 

mechanistic descriptions of the central phenomena to the 

dynamic, anticipatory ones, which can be viewed as a middle 

ground between experimental discovery and clinical 

translation.13 

3. Artificial Intelligence in Biomedical Systems 

3.1. Machine learning and deep learning applications in 

physiology 

Machine learning (ML) and deep learning (DL) are forms of 

artificial intelligence (AI), which have become an essential 

part of recent biomedical studies, allowing the identification 

of the nonlinear patterns of physiological data. Unsupervised 

clustering algorithms as well as supervised algorithms (e.g. 

support vector machines, random forests) have been used on 

various types of physiological data, such as 

electrocardiograms (ECG) and electroencephalograms 

(EEG), and continuous glucose monitoring data. These 
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techniques enable the early identification of arrhythmias, 

classification of the types of seizures, and forecasting of 

glycemic swings, respectively.14 Convolutional neural 

networks (CNNs) and recurrent neural networks (RNNs) are 

found in DL architectures and are capable of automatically 

learning hierarchical features on raw data. CNNs are more 

successful in ECG classification and cardiac imaging 

analysis than conventional methods, and long short-term 

memory (LSTM) networks yield temporality in continuous 

physiological signals. Together, ML and DL enable a more 

accurate prediction and reveal some hidden physiological 

signatures that might not be available with traditional 

statistical techniques.15 

3.2. AI-Based image analysis, diagnostics, and decision 

support 

The field of medical image analysis is one field that has been 

particularly effective in the application of AI with DL models 

demonstrating expert level performance on the detection of 

subtle morphological features. CNN-based algorithms are 

used to identify coronary artery stenosis in cardiovascular 

imaging and to measure ventricular function in a high-fidel 

way. AI-based image segmentation in neurology assists in 

defining brain tumors, locating points of seizures, and 

drawing functional networks based on MRI and fMRI 

images. Likewise, with metabolic disorders, automated 

retinal image analysis helps to detect diabetic retinopathy 

early. Outside image interpretation, AI is also found in 

clinical decision-support systems (CDSS), and it combines 

multimodal patient data (e.g. genomics, imaging and 

physiological recordings) with AI to generate personalized 

risk estimates and treatment prescriptions. Such systems have 

proved useful in triage, diagnosis and optimized treatment, 

and may represent a way forward toward precision and 

evidence-based medicine.16 

3.3. Role of AI in multi-scale modeling of human physiology 

Though AI is highly efficient in data-driven inference, its 

combination with multi-scale mechanistic models is a crucial 

move in computational physiology. Multi-scale models 

represent molecular and cellular dynamics interactions up to 

tissue and organ scales, but are generally subject to parameter 

uncertainty and are computationally intensive. The solutions 

are given by AI based on parameter estimation, surrogate 

modeling, and dimensionality reduction. As an example, ML 

models capable of calibrating electrophysiological models of 

cardiac tissue have been trained on patient-specific ECG data, 

where DL-based emulators can make predictions in near-real 

time after large-scale simulations. Hybrid models, where AI 

supplements mechanistic simulations, have been used to 

model seizure behavior, to discover insulin-glucose control 

protocols and personalize heart failure treatment. Besides, the 

intersection of AI and multi-scale modeling forms the basis 

of the digital twin’s concept--computerized patient-specific 

simulations that constantly change as new information is 

incorporated into them. The paradigm has potential in 

predictive diagnostics, adaptive therapy design and in silico 

clinical trials, developing new links between fundamental 

physiology and clinical practice.17 The field of biomedical 

systems research has been transformed by AI with increased 

predictive power, more accurate diagnostic accuracy, and 

dynamic interactions with mechanistic models. Its 

contribution to multi-scale modeling indicates a paradigm 

shift to individual, data-driven, and physiology-guided 

healthcare.18 

4. Integration of AI and Computational Physiology 

4.1. Synergistic frameworks combining ai algorithms with 

physiological models 

The AI-based inference and a mechanistic physiological 

model is a paradigm shift in biomedical research. Modern 

computational physiology uses biophysically plausible 

models, but they tend to be limited by missing parameters and 

high computational expenses. On the other hand, absolute 

data-driven AI methods are predictive but often not 

interpretable. Synergistic frameworks are designed to 

combine these methods: AI algorithms are used to perform 

parameter estimation, reduce the model and quantify 

uncertainty, and mechanistic models are used to give 

structure, biological plausibility, and causal interpretability. 

Such applications as the use of ML to calibrate cardiac 

electrophysiology models, reinforcement learning to 

optimize closed-loop insulin delivery systems, and DL-based 

surrogates to simulate computationally expensive 

simulations. These hybrid systems allow predict, validate and 

refine cycles, and the accuracy and explanatory depth 

improves. Figure 1 provided conceptual Framework of AI-

Computational Physiology Integration.19 

 

Figure 1: Conceptual framework for AI–Computational 

physiology integration19-22 

 

4.2. Benefits for real-Time monitoring and precision 

medicine 

The integration of AI and computational physiology offers 

distinct advantages for real-time monitoring and precision 

medicine. AI allows quick integration of on-going 

information streams of wearable sensors, electronic health 
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records and imaging solutions whereas physiological models 

place this data in a mechanistic framework. This synergy 

enables the development of digital twins, a virtual patient 

avatar, which dynamically adjusts to current physiological 

conditions. Such systems real-time are able to anticipate the 

negative occurrences like arrhythmias, seizures, or 

hypoglycemic events to make early interventions. At the 

population level, these hybrid models improve simulations of 

clinical trials, decrease the use of animal trials, and fasten 

drug discovery. On an individual scale, they enable precision 

medicine to customize treatment plans to individual 

physiological and genetic profiles. In the end, this integration 

fills the gap between the data-rich clinical environments and 

the mechanistically informed personalized healthcare20-22 

4.3. Case studies 

4.3.1. Case study 1: Cardiac electrophysiology and 

arrhythmia prediction 

Hybrid models have been effectively used to simulate cardiac 

electrophysiology to risk stratify arrhythmia. As an example, 

machine learning algorithms are initially used to predict ionic 

conductances and conduction properties on patient-specific 

ECGs. These measurements are then incorporated into 

mechanistically based ventricular models including the Ten 

Tusscher - Panfilov scheme, which models wave conduction 

and arrhythmogenic susceptibility. The resulting calibrated 

models are not only more accurate predictors of arrhythmia 

onset than entirely statistical approaches, but also provide 

mechanistic information of the electrophysiological 

substrate, hence informing ablation therapy and treatment 

planning on an individual patient basis.23 

4.3.2. Case study 2: Neuro-computational models for 

seizure forecasting 

The use of AI-based extraction of features on EEG data and 

integration with neural mass and neural field models has been 

used to simulate new seizure dynamics in epilepsy studies. 

Deep learning (e.g. LSTM networks) identify subtle pre-ictal 

information, whereas mechanistic simulations check how 

abnormal discharges propagate across cortical networks. This 

provides the opportunity to predict individualized seizures, 

which increases the accuracy and the lead time in such hybrid 

approaches. Notably, they also guide treatment therapies, 

such as closed-loop neurostimulation regimens that 

administer specific electrical impulses to their breakages 

prior to their clinical manifestation.24 

4.3.3. Case study 3: Digital twin for glucose–insulin 

regulation 

Another strong example of AI-mechanistic integration is the 

metabolic modeling. The systemic metabolism has 

traditionally been characterized by the Bergman minimal 

model of glucoseinsulin dynamics, which has its static 

parameters, thus restricting adaptability. Researchers have 

developed adaptive digital twins to manage diabetes by 

integrating learning algorithms of reinforcement learning into 

this system. These models feed the continuous glucose 

monitor (CGM) data and dynamically optimize insulin 

dosing, which is much better than the traditional open-loop 

and fixed-rule control systems. These digital twins are 

promising next-generation closed-loop artificial pancreas 

systems, in which real-time personalization minimizes the 

risk of hypo- and hyperglycemia.25 

5. Opportunities 

5.1. Advancements in personalized healthcare systems 

Development of AI and computational physiology makes it 

possible to abandon the use of population-based care and 

create a more individually-oriented strategy of treatment. 

Digital twins may be built as a representation of patient-

specific physiology by integrating genomic, imaging, 

wearable, and, electronic health record data into mechanistic 

infrastructures. These adaptive virtual models keep on 

updating with new data as they are received thus enabling 

clinicians to model various therapeutic situations prior to 

actual implementation. Examples include patient-specific 

heart simulation predicting arrhythmia risk and informing 

individualized ablation as well as metabolic twins predicting 

insulin therapy in diabetes. This is on the way to a genome 

medicine future wherein the treatment is preemptively 

tailored to the biological and environmental environment of 

individual patients.26 

5.2. Acceleration of clinical research and drug discovery 

AI-augmented physiological modeling offers substantial 

benefits in clinical research and pharmacological innovation. 

In silico clinical trials can be performed using virtual patient 

cohorts generated by mechanistic models that are calibrated 

to a population scale of data, eliminating the need to use 

expensive and time-consuming in vivo clinical trials. This 

speeds up testing of hypotheses, drug discovery and 

biomarker discovery. AI is also useful in the study of large 

multi-omics datasets with high dimensions, allowing the 

discovery of new therapeutic targets. These techniques 

coupled with mechanistic pharmacokinetic-

pharmacodynamic (PK-PD) models make drug development 

pipelines more streamlined by forecasting drug efficacy, 

toxicity, and inter-patient variance. The end result of this 

synergy may be a reduction in the time between bench and 

bedside and an increase in the direct success rate of candidate 

therapies.27 

5.3. Improved predictive modeling for disease progression 

and treatment response 

Among the most promising ones is the possibility to predict 

disease progression and streamline treatment reactions. The 

hybrid AI-physiology models are placed in a vantage position 

to preempt non-linear disease progression in cardiovascular, 

neurological, and metabolic applications. In the case of an 

example, models that combine ML-derived biomarkers with 
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mechanistic cardiac dynamics can be made to forecast heart 

failure exacerbations, and neuro-computational models 

predict seizure onset and guide adaptive neuromodulation 

therapies. AI-based radiomics combined with tumor growth 

models improve the prediction of treatment response and the 

risk of relapse in oncology. The same predictive abilities do 

not only inform clinical decision-making, but also make it 

possible to have dynamic, adaptive interventions- where 

therapy is updated on the fly in response to new patient 

trajectories.28 

5.4. Cost-effective and scalable healthcare interventions 

In addition to scientific and clinical progress, AI combines 

with computational physiology has a potential to bring cost-

efficient and scalable healthcare services. AI-boosted 

diagnostic tools, decision-support systems, and simplified 

surrogate models of complex simulations also lower the cost 

of complicated processes and specialist intervention. An 

example of this can be lightweight predictive models based 

on mechanistic frameworks that can be implemented in low-

resource environments through mobile health platforms, 

where early disease detection and monitoring can be 

regarded. In addition, such systems reduce the financial cost 

of healthcare infrastructures by minimizing trial-and-error in 

therapy design, and hospital readmission due to proactive risk 

prediction. The democratization of access to high-end 

medical technologies in a wide range of population groups is 

an avenue due to the scalability of AI-powered, physiology-

learned tools. The Table 2table 2 provides succinctly about 

AI/computational physiology integration opportunities.29 

Table 2: Opportunities from integrating AI and 

computational physiology23-29 

Opportunity 

Domain 

Example 

Applications 

Translational 

Impact 

Personalized 

Healthcare 

Patient-specific 

digital twins, 

individualized 

treatment 

simulations 

Enables precision 

medicine with 

adaptive, real-time 

interventions. 

Drug 

Discovery & 

Development 

In silico trials, 

virtual screening, 

toxicity prediction 

Reduces R&D 

costs, accelerates 

pipeline 

efficiency, and 

minimizes animal 

testing. 

Predictive 

Disease 

Modeling 

Cardiovascular risk 

forecasting, 

neurodegenerative 

progression models 

Supports early 

intervention, 

improves 

prognosis, and 

guides resource 

allocation. 

Healthcare 

Delivery 

AI-powered 

monitoring devices, 

telemedicine 

decision support 

Provides scalable, 

cost-effective 

access to 

advanced 

diagnostics and 

care. 

6. Challenges 

6.1. Data reliability, standardization, and interoperability 

Data quality, consistency, and interoperability are key 

requirements to the utility of AI-driven computational 

physiology. Physiological data the data are frequently 

discontinuous between institutions, in heterogeneous 

modalities (e.g., imaging, biosensors, EHRs), and have noise, 

gaps, or measurement artifact. Lack of standardized data 

formats and annotation practices hinders effective integration 

and model generalizability. Moreover, there is the issue of 

interoperability between multi-scale data, such as on one 

hand molecular omics and on the other hand clinical imaging, 

in coherent computational systems. In the absence of 

powerful data harmonization mechanisms, there are high 

risks of bias, overfitting, and lower applicability of the results 

translated to other populations.30 

6.2. Model interpretability and transparency in clinical use 

Even though AI algorithms, especially the deep learning 

models, have high predictive accuracy, they tend to be black 

boxes and not interpretable. In clinical settings, lack of such 

explanations of model outputs becomes a serious impediment 

to trust, adoption, and accountability. Mechanistic models are 

interpretable because they are explicitly represented in 

physiological terms, but when such models are combined 

with opaque AI approaches transparency can be lost. The 

increasing demand is explainable AI (XAI) methods, which 

combine prediction with understandable insights, which can 

allow clinicians to comprehend causal mechanisms, justify 

predictions, and justify therapeutic choices. The absence of 

such interpretability undermines both clinical confidence and 

patient safety.31 

6.3. Ethical considerations, including patient privacy and 

bias in AI models 

Ethical issues are one of the key focuses of implementing AI-

physiology models. Large-scale aggregation of sensitive 

health data leads to the risk of unauthorized access to or 

misuse of patient data. Also, AI models that have been trained 

to use biased or unrepresentative datasets can reinforce or 

exacerbate health disparities, especially in underrepresented 

groups. As an illustration, models obtained mainly on 

Western populations might not perform as well in 

heterogeneous populations across the globe and this could be 

restrictive in terms of equity in clinical outcome. The ethical 

frameworks should also deal with the problem of data 

security, algorithmic justice, informed consent, and 

accountability. These concerns are enhanced by the 

introduction of AI to physiological models because the errors 

can spread to treatment choices that directly affect the 

patient.32-33 

6.4. Regulatory and governance barriers 

The regulatory frameworks have not been able to keep up 

with the blistering development of AI-based biomedical 
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technologies. Hybrid AI-mechanistic models differ with 

traditional medical devices, and are dynamic, adaptive, and 

constantly changing as new information is incorporated, 

making them harder to validate and certify. Present 

regulatory frameworks are mainly based on the inert, static 

technologies, and it is unclear how to assess safety, efficacy, 

and reproducibility of adaptive models. Moreover, the 

governance frameworks should also have clear guidelines of 

intellectual property, liability and accountability in the case 

of AI-informed decisions in determining the outcomes of 

patients. The wide introduction of these technologies in 

clinical practices will not be achieved without appropriate 

regulatory clarity and international harmonization.34 

7. Future Perspectives  

7.1. Emerging trends in computational physiology and AI 

integration 

A further convergence of computational physiology and 

artificial intelligence is forthcoming in the next decade, 

enabled by high-resolution data acquisition, cloud-

computation, and fusion of multimodal data. New directions 

are the combination of multi-omics data (genomics, 

proteomics, metabolomics) with biophysical models to 

decompose genotype-phenotype interactions. On the same 

note self-learning hybrid models, which can adapt in real-

time will be able to project predictive accuracy beyond the 

static simulations. The other significant direction is the shift 

toward federated learning and decentralized AI solutions that 

can enable multi-institutional cooperation and maintain the 

privacy of data. These innovations together with high-

performance computing and quantum simulation will likely 

broaden the scale and translational scope of AI-physiology 

models.35 

7.2. Digital twins and virtual patient modeling 

One of the most revolutionary paths is the creation of digital 

twins, a virtual constantly updated model of a specific patient, 

which absorbs multi-scale information in real time. Digital 

twins may be viewed as a dynamic transition between 

retrospective diagnostics and prospective, adaptive medicine, 

as digital twins can be tested virtually in vivo, and clinicians 

can see the results before making an intervention a reality. 

Examples that have already been demonstrated are digital 

twins of the heart to stratify the risk of arrhythmia, of the 

brain to predict seizures, and of the pancreas to control insulin 

closed-loop. The full-scale modeling of these models to 

population-sized virtual cohorts will facilitate in silico 

clinical trials, drug discovery and assessment of public health 

interventions. Digital twins are expected to form the basis of 

personalized and preventive medicine despite technical and 

regulatory challenges.36 

7.3. Policy recommendations for ethical and responsible 

adoption 

Responsible governance structures need to offset the 

transformative potential of AI-integrated computational 

physiology. The policymakers ought to focus on coming up 

with data interoperability standards, adaptive models 

validation measures, and standard reporting measures to 

ensure reproducibility. Systemic bias should be prevented by 

ensuring that ethical protection covers patient privacy, 

informed consent, and algorithmic fairness. Moreover, 

regulatory innovation must be able to fit dynamically 

continuously learning systems, which fail to fit traditional 

device-approval routes. Democracy of access and equitable 

adoption of digital infrastructure across different healthcare 

environments will require the use of public and private 

partnerships, cross-national collaboration, and investment in 

online infrastructure. Finally, a humanistic approach must be 

highlighted in the form of policies, according to which the 

development of technology is connected to clinical 

responsibility and social confidence.37-38 

8. Conclusion 

Artificial intelligence (AI) and computational physiology is a 

breakthrough in biomedical science, and it provides 

unprecedented possibilities in studying and controlling the 

complex human systems. It is possible to combine the 

prophetic power of information-driven models with the 

mechanistic exactness of physiological models to obtain both 

precision and understanding that neither alone can attain. The 

opportunities resulting out of this synergy include the 

creation of personalized healthcare systems or digital twins, 

the acceleration of drug discovery or the creation of cost-

effective and scalable interventions. Translational potential 

of these frameworks is exemplified using case studies in 

cardiovascular, neurological and metabolic domains, with 

specific examples of these applications facilitating real-time 

monitoring, adaptive therapies, and precision medicine. 

However, there are major difficulties. Standardization, 

interoperability and reliability of biomedical data remains a 

limiting factor in model generalizability. Deep learning 

methods are considered potent, but they tend to be non-

transparent, which serves as a barrier to clinical acceptance 

and adoption. Ethical issues such as privacy of patients, 

discrimination in training data, and fair access require 

immediate actions. Furthermore, regulative and governance 

frameworks are currently not well-adapted to the realities of 

ongoing changes in the AI–physiology systems, which 

constrains their incorporation into a regular clinical setting. 

In spite of these obstacles, the dynamics of the field are 

evident. There are new trends like federated learning, and 

multi-omics integration and high-performance simulations 

that are opening the door to more robust and adaptive hybrid 

models. When properly protected, digital twins and virtual 

patient cohorts have the potential to revolutionize clinical 

decision-making, decrease the use of animal models, and 
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enter the new reality of predictive and preventive healthcare. 

AI and computational physiology the combination of AI and 

computational physiology presents a radical framework on 

which to develop the knowledge of human-system. When 

done in a responsible manner, it will not only enhance 

mechanistic understanding of health and illness but will also 

transform how healthcare is provided by turning it into a 

more predictive and less reactive process as well as 

generalize that of being really personalized. 
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